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Abstract
We derive a Belief-Propagation algorithm for counting large loops in a directed
network. We evaluate the distribution of the number of small loops in a
directed random network with given degree sequence. We apply the algorithm
to a few characteristic directed networks of various network sizes and loop
structures and compare the algorithm with exhaustive counting results when
possible. The algorithm is adequate in estimating loop counts for large directed
networks and can be used to compare the loop structure of directed networks
and their randomized counterparts.

PACS numbers: 89.75−k, 89.75.Fb, 89.75.Hc

1. Introduction

The structure of complex networks highly affects the critical behavior of different cooperative
models [1] and the nonlinear dynamical process that takes place on the network [2].

In particular, both the directionality of the links which suggest a nonsymmetric interaction
[3–5] and the local loop structure [6] of the network which correlates neighboring nodes have
important dynamical consequences. In fact, directionality of links becomes particularly
important when a transport process of mass or information takes place in the network [3] and
the loop structure in these directed networks is crucial for assessing the networks’ robustness
characteristics and determining the load distribution.

Directed networks are ubiquitous in both man-made and natural systems. Some examples
of directed networks are the Texas power-grid, the World-Wide-Web, the foodwebs and in
biological networks, such as the metabolic network, the transcription network and the neural
network. The local structure of the directed network is radically different from the structure
of their undirected version [7]. While many undirected networks are characterized but large
clustering coefficient [8] and large number of short loops [9, 10] this is not a general trend for
directed networks. For example, the C.elegans neural network has a over-representation of
short loops compared to a randomized network if the direction of the links is not considered

1751-8113/08/224003+08$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/22/224003
http://stacks.iop.org/ JPhysA/41/224003


J. Phys. A: Math. Theor. 41 (2008) 224003 G Bianconi and N Gulbahce

while it has an under-representation of the number of loops when the direction of the links is
taken into account [7].

Nevertheless, while counting small loops in a given network is a relatively easy
computation, counting large loops in a real world network is a very hard task. In fact,
the number of large loops can, and usually does grow exponentially with the number of nodes
N in the network. The known efficient exhaustive algorithms [11, 12] for counting loops still
have a time bound of O(N ∗ M ∗ (L + 1)) where N,M,L are respectively the number of
nodes, links and loops in the network. This task becomes computationally inapplicable for
counting large loops in many real networks. Two different approaches for the study of long
loops have been proposed: devising Monte Carlo algorithms, or using Belief-Propagation (BP)
algorithms. The two approaches have both been pursued in the case of undirected networks
[13–15]. The BP algorithm [14] is a heuristic algorithm which does not have sampling bias
as the Monte Carlo algorithm [13] does and is observed to give good results as the size of the
network increases.

In this paper, we generalize the BP algorithm proposed by [14, 15] to directed networks.
We analytically derive the outcome of the algorithm in an ensemble of random uncorrelated
networks with given degree sequence of in/out degrees in agreement with the prediction for
the average number of nodes in this ensemble [7]. We finally study the particular limitations
of the algorithm for small network sizes and small number of loops in the graph. The
paper is divided into four further sections. In section 2, we derive the BP algorithm for
directed networks following the similar steps as described in [15]. In section 3, we derive the
distribution of the small loops in uncorrelated random ensembles. In sections 4 and 5, we
describe the steps in the algorithm and its application to a few characteristic directed networks.

2. Derivation of the BP algorithm

Given a network G of N nodes and M links, we define a partition function Z(u) as the
generating functions of the number NL of loops of length L in the network,

Z(u) =
∑
L

uLNL(G). (1)

Starting with this partition function, we can define a free energy f (u) and an entropy σ(�) of
the loops of length L = N�σ(�) as the follows:

f (u) = 1

N
ln Z(u) σ(�) = 1

N
lnNL=�N . (2)

For each directed link in the network, l = 〈ij 〉 from node i to node j , if we define a
variable Sl = 0, 1 which indicates if a given loop passes through the link l, the partition
function Z(u) can then be written as

Z(u) =
∑
{Sl}

w({Sl})u
∑M

l=1 Sl , (3)

where w({Sl}) is an indicator function of the loops, i.e. it is 1 if the variables Sl = 1 have
a support which forms a closed loop, and it is zero otherwise. As in [14, 15] we take
for simplicity a relaxed local form of the indicator function w({Sl}) which is 1 also if the
assignment of the link variables Sl is compatible with a few disconnected loops. In particular,
we take w({Sl}) as

w({Sl}) =
N∏

i=1

wi({S}i ), (4)
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where {S}i = {S〈ij 〉}j∈∂i , and ∂i indicates the set of nodes either pointing to i or pointed by i
and where wi({S}i ) is defined as

wi({S}i ) =

⎧⎪⎨
⎪⎩

1 if
∑

j∈∂+i S〈ij 〉 = 1 and
∑

j∈∂−i S〈ij〉 = 1

1 if
∑

j∈∂+i S〈ij 〉 = 0 and
∑

j∈∂−i S〈ij〉 = 0

0 otherwise

with ∂+i and ∂−i indicating the sets of nodes j which point to i or which are pointed by i,
respectively. Finding the free energy f (u) associated with the partition function (3) can be
cast into finding normalized distributions pv({Sl}) which minimize the Kullback distance

FGibbs[pv] =
∑
{Sl}

pv({Sl}) ln

(
pv({Sl})

w({Sl})u
∑

l Sl

)
. (5)

In fact, it is straightforward to show that FGibbs assumes its minimal value when pv({Sl}) =
w({Sl})u

∑
l Sl /Z. If the given network is a tree, the trial distribution pv(S) takes the form

p({Sl}) =
(∏

l

pl(Sl)

)−1 (∏
i

pi(Si)

)
(6)

with pl(Sl) and pi({S}i ) being the marginal distributions

p�(S�) =
∑

{Sl}\Sl

p({Sl}) pi({S}i ) =
∑

{S}\{S}i
p({S}). (7)

In a real case, when the network is not a tree, we can always take a variational approach and
try a given trial distribution of form (6). After taking this variational approach, we then have
to minimize the Bethe free energy FBethe as

FBethe[{pi}, {pl}] =
∑

i

∑
{S}i\Sl

pi({S}i ) ln

(
pi({S}i )
wi({S}i )

)
−

∑
l

∑
Sl

pl(Sl) ln(pl(Sl)u
Sl ). (8)

For each link l〈ij 〉 starting from i and ending in j , there are the constraints

pl(Sl) =
∑
{S}i

pi({S}i ) pl(Sl) =
∑
{S}j

pj ({S}j ). (9)

Introducing the Lagrangian multipliers enforcing the conditions (9) and the normalization
of the probabilities it is easy to show that a possible parametrization of the marginals is as
follows:

pl(Sl) = 1

Cl

(uyi→j ŷj→i )
Sl

pi({S}i ) = 1

Ci

wi({S}i )
∏
j∈∂+i

(uyi→j )
S〈ij〉

∏
j∈∂−i

(uŷi→j )
S〈ij〉 . (10)

For every directed link 〈ij 〉 from node i to node j the values of the messages yi→j and ŷj→i

are fixed by the constraints in equation (9) to satisfy the following BP equations:

yi→j = u
∑

k∈∂−i yk→i

1 + u2
∑

k′∈∂+(i)\j ŷk′→i

∑
k∈∂−i yk→i

ŷj→i = u
∑

k∈∂+j ŷk→j

1 + u2
∑

k′∈∂−j\i yk′→j

∑
k∈∂+i ŷk→j

. (11)

The normalization constants for the marginals are consequently given by

Cl = 1 + uyi→j ŷj→i . Ci = 1 + u2
∑

k′∈∂−i

yk′→i

∑
k∈∂+i

ŷk→i . (12)
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The Bethe free energy density fBethe = 1
N

FBethe becomes

NfBethe(u) = −
M∑
l=1

ln Cl +
N∑

i=1

ln Ci. (13)

For any given value of u the loops length is given by

�(u) = 1

N

M∑
l=1

pl(1) = 1

N

∑
l

uyi→j ŷj→i

1 + uyi→j ŷj→i

. (14)

The function �(u) can be inverted giving the function u(�) and finally proving an expression
for the entropy of the loops in the graph under a Bethe variational approach,

σBethe(�) = f (u(�)) − � ln u(�). (15)

3. Derivation of the typical number of short loops in a random directed network with a
given degree sequence

We consider an ensemble of random directed networks with a given degree sequence{
kin
i , kout

i

}∀i = 1, . . . , N . If the maximal in/out connectivities K in/Kout of the network satisfy
the inequality K inKout < (〈kin〉)N , the network is uncorrelated. By qkin,kout we indicated the
degree distribution of the ensemble. In [7], an expression for the average number NL of small
loops was given,

〈NL〉 � 1

L

( 〈kinkout〉
〈kin〉

)L

(16)

valid as long as

L 	 N
〈kinkout〉2

〈(kinkout)2〉 . (17)

It an interesting exercise to see what is the distribution of the number of small loops in the
ensemble of directed networks by solving the BP equation for a random directed ensemble in
parallel with the distribution found in the undirected case [15]. In a directed network ensemble
the BP messages y and ŷ along each link are equally distributed depending only on the value
of u. Given the BP equations (11), the distribution P(y; u) of the field y has to satisfy the
self-consistent equation

P(y; u) =
∞∑

kout=1

kout

〈kout〉q0,koutδ(y) +
∞∑

kin=1

∞∑
kout=1

kout

〈kout〉qkin,kout

×
∫ ∞

0
dy1P(y1; u) . . . , dykinP(ykin; u)

×
∫ ∞

0
dŷ1P(ŷ1; u) . . . dŷkoutP(ŷkout; u)δ(y − gk({y}, {ŷ})) (18)

with

g1 = uy1

gk = u
∑

k∈∂−i yk→i

1 + u2
∑

k′∈∂+(i)\j ŷk′→i

∑
k∈∂−i yk→i

for k � 2. (19)
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In fact, given a random edge the probability that its starting node i has connectivity (kout, kin)

is given by kout
〈kout〉 qkin,kout . The fields ŷ have to satisfy a similar recursive equation, i.e.

P(ŷ; u) =
∞∑

kin=1

kin

〈kin〉qkin,0δ(y) +
∞∑

kin=1

∞∑
kout=1

kin

〈kin〉qkin,kout

×
∫ ∞

0
dy1P(y1; u) . . . dukinykinP(ykin; u)

×
∫ ∞

0
dŷ1P(ŷ1; u) . . . dukout ŷkoutP(ŷkout+; u) δ(y − ĝk({y}, {ŷ})) (20)

with

ĝ1 = uŷ1

ĝk = u
∑

k∈∂+i ŷk→i

1 + u2
∑

k′∈∂+(i)\j ŷk′→i

∑
k∈∂−i yk→i

for k � 2. (21)

For a given small value of u = um + ε, the two coupled equations in equations (18) and (20)
become independent. By proceeding as in [15], we find that the number of small loops in the
ensemble is given by

〈NL〉 � 1

L

( 〈kinkout〉
〈kin〉

)L

(22)

with Poisson fluctuations for loops of size L 	 log(N). For larger loop sizes up to the
boundary limit given by (17), the average number of loops in the ensemble is still given by (22)

but with significant fluctuations in the number of loops.

4. The BP algorithm

The study of the partition function equation (3) carried on in section 2 is such that a new
algorithm for counting large loops in a directed network can be formulated. In particular,
given a network with N nodes and M links, the algorithm is:

• Initialize the messages yi→j , ŷj→i for every directed link between i and j to random
values.

• For every value of u, iterate the BP equations in equation (11)

yi→j = u
∑

k∈∂−i yk→i

1 + u2
∑

k′∈∂+(i)\j ŷk′→i

∑
k∈∂−i yk→i

ŷj→i = u
∑

k∈∂+j ŷk→j

1 + u2
∑

k′∈∂−j\i yk′→j

∑
k∈∂+i ŷk→j

. (23)

until convergence.
• Calculate �(u) and f (u) from equations (14) and (13) which we recall here for

convenience

�(u) = 1

N

M∑
l=1

pl(1) = 1

N

∑
l

uyi→j ŷj→i

1 + uyi→j ŷj→i

. (24)

NfBethe(u) = −
M∑
l=1

ln(1 + uyi→j ŷj→i ) +
N∑

i=1

ln

⎛
⎝1 + u2

∑
k′∈∂−i

yk′→i

∑
k∈∂+i

ŷk→i

⎞
⎠ . (25)
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Figure 1. Entropy σ(L/N) of the loops of length L for the real Chesapeake food-web (solid line)
and the entropy of the loops counted by exact enumeration (diamonds).

• Evaluate σ(�) by equation (15) which again we repeat here for convenience

σBethe(�(u)) = f (u) − �(u) ln u. (26)

5. Application of the algorithm to real directed networks

We applied the formulated algorithm to a large set of directed networks [17]. For some of these
networks we calculated the number of loops NL of length L directly by exact enumeration
[12]. We then compare the entropy of the loops σ(�) found by the BP algorithm with the
entropy of the loops σ0(�) found by the directed enumeration of the number of loops

σ0(�) = 1

N
ln

(
N exact

L=�N

)
. (27)

We note that for the foodweb with small number of nodes the algorithm does not provide a
good approximation for the number of loops present in the graph. A dramatic example is
the Chesapeake foodweb. In this case, we were able to count all the loops in the network
exhaustively since the network contains very few loops. In this case, the BP algorithm, since
the loops are few the BP algorithm highly overestimates the largest loop in the network (see
figure 1). In fact, it predicts a largest loop of lend Lmax = 12 where the largest loop is of
length Lmax = 7. This effect is observed to be present also in the undirected BP algorithm
[14].

The discrepancy is predicted to be strong only in cases where the size of the network is
small and the number of loops in the network is small just as in the Chesapeake case. When
the network has a larger number of loops and the entropy of the loops is larger, much better
results are expected. In the case of the C. elegans neural network (N = 306) the entropy for
small number of loops is overlapping with the results of exact enumeration as it can clearly be
seen in figure 2. We further compare the results of the algorithm on a given network and on
a randomized network ensemble. A typical example is the metabolic network of E. coli [17]
(see figure 3) in which we could compare the entropy provided by the BP algorithm with the
entropy of a series of 100 random networks with the same degree distribution.
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Figure 2. Entropy σ(L/N) of the loops of length L for the real C.elegans neural network (solid
line) and the entropy of the loops counted by exact enumeration for small loops (small diamonds).
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Figure 3. Entropy σ(L/N) of the loops of length L for the real metabolic network and average
entropy of the loops in the randomized network ensemble with the same degree sequence.

6. Conclusions

In conclusion, we provide a new algorithm for counting large loops in the directed network.
The algorithm is predicted to give good results only for large network size N. In this paper
we demonstrate cases in which it fails to predict the right entropy and loop structure due to
the small size of the network. We propose to study the significance of loop structure in large
networks by comparing the results of the algorithm on real networks and randomized networks
when networks are large and the number of loops in the network are also large.
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